- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Grier, David G (2)
-
Sustiel, Jacqueline B (2)
-
Gronert, Matthew (1)
-
King, Ella M (1)
-
Morrell, Mia C (1)
-
Pastor, Hayden (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Active matter taps into external energy sources to power its own processes. Systems of passive particles ordinarily lack this capacity, but can become active if the constituent particles interact with each other nonreciprocally. By reformulating the theory of classical wave-matter interactions, we demonstrate that interactions mediated by scattered waves generally are not constrained by Newton's third law. The resulting center-of-mass forces propel clusters of scatterers, enabling them to extract energy from the wave and rendering them active. This form of activity is an emergent property of the scatterers' state of organization and can arise in any system where mobile objects scatter waves. Emergent activity flips the script on conventional active matter whose nonreciprocity emerges from its activity, and not the other way around. We combine theory, experiment, and simulation to illustrate how emergent activity arises in wave-matter composite systems and to explore the phenomenology of emergent activity in experimentally accessible models. These preliminary studies suggest that heterogeneity is a singular perturbation to the dynamics of wave-matter composite systems, and induces emergent activity under all but the most limited circumstances.more » « less
-
Dynamics of an acoustically levitated fluid droplet captured by a low-order immersed boundary methodSustiel, Jacqueline B; Grier, David G (, Physics of Fluids)We present a variant of the immersed boundary (IB) method that implements acoustic perturbation theory to model acoustically levitated fluid droplets. Instead of resolving sound waves numerically, our hybrid method solves acoustic scattering semi-analytically to obtain the corresponding time-averaged acoustic forces on the droplet. This framework allows the droplet to be simulated on inertial timescales of interest, and therefore works with much larger time steps than traditional compressible flow solvers. To benchmark this technique and demonstrate its utility, we implement the hybrid IB method for a single droplet in a standing wave. Simulated droplet shape deformations and streaming profiles agree with available theoretical predictions. Our simulations also yield insights into the streaming profiles for elliptical droplets, for which a comprehensive analytic solution does not yet exist.more » « less
An official website of the United States government
